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AFIT/GOA/ENG/98M-01 

Abstract 

Air Force analysts are faced with the task of monitoring satellites with ground- 

based telescopes. Images are collected and analyzed in a time-consuming and subjective 

effort to detect any behavior that is anomalous. This research maximizes use of a priori 

information to create an automated, real-time satellite behavior classification tool. 

Using modeling software and knowledge of a satellite's orbit, reference imagery is 

created for each measured image in a satellite pass. Features are extracted from the 

measured and reference image pairs that provide good overall gaussian classification 

accuracy (85%), reduce the dimensionality of the problem (from 32,768 down to 3), and 

are least dependent on data partitioning. The statistical image pair classifier is tested for 

robustness to atmospheric distortion, and training data requirements are explored. 

Satellite behavior is classified by counting the classification results for the image 

pairs in a satellite pass. A binomial analysis of the classification technique predicts 

virtually 100% classification accuracy of satellite behavior. This research demonstrates 

the validity of model based satellite behavior analysis. 
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Real Time Detection 

Of Anomalous Satellite Behavior 

From Ground-Based Telescope Images 

1. Introduction 

1.1 Explanation of the Problem 

Air Force personnel are involved in the task of Space Object Identification (SOI). 

This task includes a variety of activities with the purpose of understanding and recording 

the characteristics of the numerous entities orbiting our planet. The number of space 

objects is increasing at a growing rate, requiring greater amounts of effort to maintain 

current information on each object of interest. As the number of space objects increases, 

the need for automated analysis tools becomes more acute, especially in this era, when a 

growing number of the possible threats to our nation's security are space-based. 

While numerous software packages are available that help track and image 

satellites in orbit, the image analysis task is performed by trained analysts. The analyst is 

faced with a series of images from a satellite's pass taken with a ground-based telescope. 

Because information is maintained on each and every orbiting satellite, the images are 

taken of a known satellite, in a known orbit. The analyst must determine if the imaged 

satellite is behaving in a new or anomalous manner of strategic interest. 

This analysis is an important, time consuming, and subjective portion of the SOI 

task. An automated tool capable of objective, real time analysis would ensure consistent, 

timely knowledge of satellite behavior. With this knowledge readily available, the Air 

Force would be in a better position to ensure the security of the nation. 

1.1.1 Problem Statement.  Explore pattern recognition techniques based on a full 

utilization of available information for use in anomalous satellite behavior detection 

algorithms. Specifically, construct a computer algorithm capable of classifying a 

1 



satellite's behavior as normal or anomalous based on a collection of telescope images 

from a single satellite pass. 

1.2 Approach 

The problem as stated in Section 1.1.1 includes the phrase "full utilization of 

available information" due to a review of previous work done on the SOI problem at 

AFIT. Initially, the intent of this thesis was to improve the performance of the techniques 

that had already been applied to this problem. However, while exploring previous work, 

a need to re-look at the problem itself became apparent. Work up to this point had 

addressed the images without regard to the information that is known about the image. 

For example, we know what satellite is in the images, and what that satellite is supposed 

to be doing. This type of information is known, and should be used. To solve this 

problem most efficiently, it is essential that the problem, including all relevant 

information, be thoroughly understood and exploited. 

1.3 Scope 

1.3.1 Problem Exploration. Only sets of images from two actual passes of a 

satellite are available for use in defining the problem. This data, as well as an 

understanding of the method by which it is obtained, aids in the process of creating 

simulated data sets large enough to properly test pattern recognition techniques. Section 

2.3 provides a full description of the real data and problem. 

1.3.2 Simulating Real Data. As only two sets of real data are available, this 

thesis must create and use simulated data based on knowledge of the real data. The initial 

simulated images were created using the SatTools software [9], but are changed 

significantly for use in this thesis. Simulated data are designed to be similar to the data 

that would actually be measured and used in the real world. 

1.3.3 Selecting Features. Comparing the object within images of different 

origins, quality, and resolution requires a representation of the object that is immune to 

differences of these quantities between images. To compare objects, it is necessary to 



extract features from the sets of images that ignore differences in creation source, and 

simply represent the orientation and shape of the satellite itself. Feature extraction can 

also reduce the dimensionality of the information used. 

1.3.4 Pattern Recognition Algorithm. There are many types of pattern 

recognition tools available, with a statistical classification method usually being the 

baseline. The solution methodology in this thesis utilizes two classification steps. In the 

first step, each image within a pass is classified as normal or anomalous. Then, the 

satellite pass is classified as normal or anomalous based on the cumulative statistics of 

the image classifications. 

1.4 Thesis Organization 

Chapter 2 covers the background information of earlier research on this problem, 

as well as the basics of traditional pattern recognition. Chapter 3 details the solution 

process, the methodology used in creating simulated data, the feature extraction process, 

the pattern recognition techniques applied to the data, and the experiments performed. 

Chapter 4 reviews the results of the experiments conducted and discusses the meaning of 

those results. The final chapter provides conclusions and addresses the operational 

applications of this research. 



2. Background 

This chapter provides the background upon which this thesis is built. Initial 

investigation into the work done earlier on this problem prompted a review of the 

problem itself. This chapter will overview the work done by two previous AFIT students, 

Gary Brandstrom and Neal Bruegger, then delve into the problem. The chapter also 

contains basic information on pattern recognition and the Fourier transform. 

2.1 Pattern Recognition 

While the field of pattern recognition is full of complex terminology and 

algorithms, at the most basic level, it is simply an attempt to determine to which group an 

unknown entity belongs. In many problems, such as this one, the number of possible 

groups is two, but the number of possible groups is not restricted. In this thesis, the two 

categories are "normal" and "anomalous" in reference to satellite behavior [1]. 

To make most pattern recognition problems manageable, pre-processing in the 

form of feature extraction is usually required. Features must be carefully devised so that 

differences in the features can indicate class membership with the chosen pattern 

recognition algorithm. Features are usually required to reduce the dimensionality of the 

data, as well as filter the data for the information that provides a class distinction [1]. In 

this thesis, two 128x128 pixel gray scale images are the initial data from which features 

must be extracted. Full storage of the information in the two images requires 32768 

specific values. By extracting features from the images, it is possible to reduce the 

number of values that represent the information in the images to under 100, while still 

allowing successful classification. 

Once features have been collected, pattern recognition algorithms require training. 

Training can be either unsupervised, or supervised, with the difference being the 

application of knowledge about the class membership of the training data. This thesis is 

concerned only with supervised training. The simplest algorithms for pattern recognition 

are based on statistics. A collection of training data can be used to determine a 

probability density function with respect to the features for each class. When a new set of 



features must be classified, it is possible to assign a probability of class membership to 

that set of features. In this manner, classification is accomplished [2]. Many additional 

algorithms have been invented for use in pattern recognition. The previous work done in 

the SOI area at AFIT evaluated the performance of two different pattern recognition 

algorithms in the SOI problem. 

2.2 Previous Work 

Work on this problem began at AFIT with Captain Gary Brandstrom (GSO-95D). 

His thesis explored two different spatio-temporal pattern recognition techniques, Hidden 

Markov (HMM) models and the Feature Space Trajectory Neural Network (FSTNN), in 

an effort to determine which would be better in solving the SOI problem [10]. Captain 

Neal Bruegger (GOR 97M) worked to improve the performance of the FSTNN by 

improving the temporal aspect of the algorithm [7]. 

2.2.1 Problem as Approached by Brandstrom and Bruegger. Brandstrom and 

Bruegger approached the SOI problem with the statistical and nearest neighbor type 

classifier because of the infinite possible viewing angles and the fact that for each pass of 

the same satellite, the images taken of that sequence can appear quite different. These 

uncertainties would allow no knowledge of what the satellite should look like, and thus 

no known image sequence against which to compare the actual image sequence produced 

by the telescope. 

2.2.2 Overview of Brandstrom Accomplishments. Brandstrom created a 

simulated data set with which to accomplish his work. Using the SatTools software 

package, he created a data set consisting of image sequences made up of 20 images taken 

with either 8 or 10 seconds between each image. All the images are of the same satellite. 

Brandstrom used this simulated data to make comparisons between two algorithms: the 

HMM and FSTNN. He found the FSTNN worked better than the HMM. 

2.2.2.1 Hidden Markov Model. The HMM is a statistical model often applied to 

speech recognition problems that determines an overall probability that a sequence of 

observations (images) belongs to a certain class. They have been shown in work done by 



Fielding and Ruck to be capable of classifying images of 3D objects based on the way the 

features and viewing angle for each image change with respect to time [3]. The overall 

probability of belonging to a certain class is determined by the probabilities of state to 

state transitions, where each state represents an observation at a certain time step [4]. 

2.2.2.2 Feature Space Trajectory Neural Network. The FSTNN was initially 

developed by Neiberg and Casasent to estimate the pose of an object in an image [5,6]. 

The training stage of the FSTNN consists of storing the characteristics, or features, for a 

set of observations. These observations should span the range of the possible poses of the 

object. A linear feature space trajectory is then assumed to connect the observations 

within the feature space. When a new image, or set of features, is available for test, the 

algorithm makes a perpendicular projection onto the nearest segment of the feature space 

trajectory. The value for the pose is determined by interpolation along that portion of the 

FST (Figure 1). 

Class 2 

X> 

Class 1 

Training Trajectory 

(~)     Test Vector 

Figure 1. FSTNN as applied to pose estimation 



If we consider the set of observations as not only pose observations, but temporal 

observations as well, we have a tool with which temporal information can be taken into 

account during the classification process. We could use a perpendicular projection of a 

new point in feature space to determine both the pose and the instant in time represented 

by the new point. The feature space trajectory becomes a trajectory through feature space 

as well as through time, which can help to narrow the problem solution space somewhat. 

While the FSTNN was initially designed to answer pose estimation questions, it 

can also be used as a template matching type of classifier. In the simplest classification 

problem, we have two separate classes represented by two separate feature space 

trajectories. In order to classify a new sample, we simply create a feature space trajectory 

representation of the sample, and then compare the sample feature space trajectory against 

the feature space trajectories representing the two separate classes. With a distance 

measure, we can compute a measure of how close the sample lies to each of the class 

feature space trajectories. Class membership is chosen to correspond with the smaller 

distance. 

Temporal information is inherent in the feature space trajectory when the 

observations that make up the points in that features space trajectory are sequenced 

through time. When using a FST as a template against which to compare the feature 

space trajectory of a new sample, temporal information is not considered. Attempting to 

use the temporal information was the purpose of Neal Bruegger's thesis work. 

2.2.3 Overview ofBruegger Accomplishments. Bruegger continued the work that 

Brandstrom had started. He took the FSTNN and incorporated time into the algorithm, 

forcing the algorithm to consider the time sequence of observations within the feature 

space. Previously, the algorithm had been time insensitive, even though time was an 

important known bit of information. He proposed, and tested, two separate methods for 

incorporating time into the FSTNN: Dynamic Time Warping and Uniform Time 

Warping. Both methods of considering time in the anomalous / normal decision process 

were capable of improving performance. 



2.2.3.1 Dynamic Time Warping (DTW). Dynamic Time Warping is one method 

for incorporating time into the FSTNN. DTW is based on the knowledge that the 

observations in the feature space are actually also observations in time. When using a 

FSTNN as a template against which to match an unknown trajectory, the DTW algorithm 

restricts the segment against which a perpendicular projection can be made. By 

restricting the segments available for projection, the algorithm forces the proper motion 

through feature space. 

2.2.3.2 Uniform Time Warping (UTW). Uniform Time Warping is a less flexible 

method of dealing with time than DTW. UTW considers the test and training feature 

space trajectories as continuous transitions of the same overall duration. The UTW 

algorithm segments both the test and training trajectories into a given number of 

equidistant points. Each equidistant point on the test trajectory corresponds to a single 

point on the training trajectory. The distance between each corresponding point is 

summed for the final distance measure. This method requires equal duration for both the 

test and training measurements. [7] 

2.3 Fourier Space 

As the Fourier space representation of images will be used in this thesis, this brief 

section on the interpretation of that space is included. While the mathematics behind the 

Fourier transform is somewhat complex, the interpretation of the transform can be 

understood without it. In one dimension, the Fourier transform represents a signal as a 

weighted sum of sinusoids at different frequencies. These sinusoids, when added 

together will recreate the original signal. Thus, the collection of frequencies and 

amplitude at each frequency is a representation of the original signal in the frequency 

domain [8]. 

In two dimensions, the same interpretation applies. The frequency domain 

representation of a two-dimensional waveform is a collection of sinusoids at particular 

frequencies, amplitudes, and phases. These frequencies, amplitudes and phases represent 

the sinusoids required to reconstruct the original waveform. When a two-dimensional 

Fourier transform is applied to an image, the resulting Fourier representation of the image 
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is a matrix of values the same size as the original image. Each member of the matrix 

contains a real and imaginary portion. From this imaginary number, both energy and 

phase can be calculated. 

2.4 Problem Description 

It should not be surprising that Bruegger's work incorporating time into the 

solution algorithm improved the results. The more information that is known about a 

system, the easier it should be to solve for the unknowns. Bruegger's addition of 

sequence information to the algorithm was a first step in a more complete look at the 

problem. One purpose of this thesis is to discover the other parts of the problem that 

earlier algorithms ignored to provide an improved method of determining if the satellites 

being imaged are behaving normally or abnormally. 

2.4.1 Actual situation. The Air Force Maui Optical Station (AMOS) images 8-10 

different satellites with a ground-based telescope that are of interest to the Air Force in 

relation to this thesis. Every orbiting object of interest is tracked by the Air Force, so 

information regarding the identity and position of any specific satellite is a priori 

knowledge. Using the orbital information for a known satellite, the AMOS telescope can 

image an entire pass. The data from a single pass can usually be reduced into somewhere 

between 3 and 60 good images of the satellite. Each reduced image is actually made up 

of numerous images that have been processed together to produce a single good image. 

The reduction process is a method of combating the problems of imaging through a 

turbulent atmosphere. 

There is no periodicity to the good images within a pass. The images may not be 

evenly temporally spaced within a pass, but the point in time for each image is known. 

Along with a time stamp, the telescope pointing angle and angle of elevation for each 

image are also recorded. Based on this available information, the position of the satellite 

in the sky is precisely known. 

The atmospheric conditions are the only true unknowns in the image acquisition 

process. The quality of each image is strongly dependent on weather conditions, 

atmospheric turbulence, and the fact that most of the images are taken during daylight 



hours. The variability in these conditions results in degraded images, which makes it 

difficult to visually determine if the satellite is behaving properly. 

One more very important piece of information is also available for use in this 

thesis: the proper appearance of the satellite given its position with respect to AMOS is 

known. This knowledge is a key element in solving this problem, but has been ignored in 

previous work. Mathematical models of each satellite in the Air Force inventory exist 

which can be used to create simulated imagery of any satellite given any viewing angle 

and viewing location. RDCSIM (Research and Development Consortium Simulation) is 

a satellite imaging simulation that is currently used to support the efforts of the 

AMOS/MHPCC (Maui High Performance Computing Center) Research and 

Development Consortium. RDCSIM is heavily based on the simulation software 

developed for the Phillips Lab called SATSIG (Satellite Signature). Both these tools are 

used to create simulated imagery of satellites for which mathematical models exist [9]. 

2.4.2 Actual images. Only two sets of actual images of a known satellite are 

available for this thesis work. This mandates and aids the creation of simulated data. The 

actual images are from passes of a TD81 satellite taken on 12 and 15 October, 1996 

(Figure 2). 

Figure 2. Pristine image of TD81 satellite. 
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The 12 October pass includes only 6 images of medium quality. The 15 October pass 

contains 48 images of slightly better quality. The satellite can be easily recognized in 

many of the images in the 15 October pass (Figure 3). 

Figure 3. Samples of good images from 15 Oct 96 pass. 

While the shape of the satellite is easy to see, most of the details are not. Without 

the details, it is difficult to determine the orientation of the satellite from a single two- 

dimensional image. The body of the satellite could be pointing towards or away from the 

telescope, but without details, the image will appear as a simple cross shape (Figure 3, 

Image 1). Only when the body and solar panels are not lined up with respect to the line of 

site of the telescope, does the satellite appear to be more than a simple cross (Figure 3, 

Image 18). To add to the complexity of the problem, image quality is not consistent 

throughout a pass. The same October 15 pass that contains the images in Figure 3 also 

contains the images in Figure 4. 

11 



Figure 4. Sample of bad images from 15 Oct 96 pass. 

Examination of the small amount of available real data aids in construction of 

simulated data by revealing the quality of imagery that can be expected. Of particular 

interest are issues such as satellite image size within the frame, intensity of satellite to 

background pixels, visible detail, and image blur. By concentrating on these issues, it 

should be possible to make simulated data that approaches the operational situation. 

After exploring and understanding the background information, the path to a solution 

should be easier to conceive and follow. 
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3. Methodology 

In this chapter a solution process is proposed. The process must be tested by 

experimentation on manufactured data. This chapter will first provide an overview of the 

solution procedure, then delve more deeply into the process used for creating the data for 

experimentation. Portions of the solution procedure will be detailed, and, finally, the 

experiments described. 

3.1  Solution Procedure 

By delving more deeply into the problem and understanding the information that 

is available, a very basic solution methodology can be seen. The a priori information 

regarding a satellite's orbit in conjunction with the information corresponding to each 

image can be used to create a simulated reference image of how the satellite should 

appear in each image. This computer generated image can be compared against the 

measured image to determine how the satellite appears to be behaving at that moment. 

The results of the comparisons between image pairs for the entire pass can be examined 

to determine if the satellite is behaving normally (Figure 5). 

13 
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Figure 5. Solution Procedure 
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3.2 Database 

Due to the lack of sufficient amounts of measured data, this thesis requires the 

synthesis of simulated data. Pseudo-measured images will be created by mimicking 

atmospheric effects. Once the data has been created, it will be assumed to be "measured" 

data in this thesis. The simulated database consists of image pairs similar to the ones that 

would exist before the compare image pairs step in the solution procedure (Figure 5). 

Each image pair will contain a pseudo-measured and a simulated reference image, where 

the pseudo-measured image is also a simulated image. 

A portion of the pristine TD81 imagery initially created by Brandstrom will be 

used as the base imagery for the data created in this thesis. In total, this thesis makes use 

of 120 satellite passes. Each pass contains 20 images for a total of 2400 images. 

Approximately half of the passes were created as anomalous, but the approach in this 

thesis makes an anomalous pass one in which the pseudo-measured images do not match 

the reference imagery within each image pair. Thus, any of the passes can be made into 

either normal or anomalous passes, by simply creating an image pair that either matches 

or does not match. Figure 6 depicts the process of creating the simulated data for a 

normal pass with atmospheric distortion. 

Anomalous passes are created in a fashion similar to the normal pass creation, 

differing only in the final image pairing. For the anomalous passes, the reference image 

from which the pseudo-measured image is created is not used as the reference image in 

the final pairing. Rather, a simulated image from another pass is used as the reference 

image. This gives anomalous passes with image pairs that may be similar, but do not 

match. 

15 
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Figure 6. Process for creating normal pass image pairs. 
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Seven different data sets are used in this thesis. The first data set consists of 20 

satellite passes with the pseudo-measured images all distorted at the same level. The 

remaining six sets of data are all based on the same 100 satellite passes, with the pseudo- 

measured images distorted to 6 different levels by means of different optical transfer 

functions (OTFs). OTFs are described below. 

Table 1. Description and Optical Transfer Function identification of data sets. 

Data Set Image Pairs Degradation 
Level 

OTF 

1 400 Medium 3 

2 2000 Low 1 

3 2000 Medium-Low 2 

4 2000 Medium 3 

5 2000 Medium-High 4 

6 2000 High 5 

7 2000 Random 1-14 

3.2.1 Distortion. To create pseudo-measured images that approximate the quality 

of the real images, it is necessary to degrade the pristine simulated imagery in a manner 

similar to the degradation affected by the atmosphere and optics. Degradation of the 

images is accomplished by using an optical transfer function. The OTF is applied to the 

Fourier space representation of the image. The resulting representation is inverse Fourier 

transformed to obtain the degraded image (Figure 7). This process reduces the level of 

fine detail in a manner similar to the degradation affected by the atmosphere. 

17 



Fourier Space 

,--%**ip Transformation 

Original Image Representation of Image 

Optical Transfer Function 

Weighted Fourier Space 

Transformation 

Representation of Image 

Figure 7. Process of distorting images. 

An OTF can be calculated using the HYSIM5 program [7]. This program 

calculates an OTF corresponding to certain levels of atmospheric turbulence and lens 

distortion. The OTF is used as a matrix of weights for application against the Fourier 

space representation of the image. Figure 8 plots the magnitude of one OTF used in this 

thesis. The height in the Z-axis represents the weighting applied to the corresponding 

point in the Fourier space representation of the image. 
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Figure 8. Optical Transfer Function used for image distortion. 

Fourteen different OTFs are utilized in this thesis for creating the 7 data sets 

(Table 1). Figure 9 shows the distortion affected on a pristine satellite image by each of 

the 14 possible OTFs. Data set one is created with the medium level OTF. Data set 2 

through 6 are created by using a single OTF across the entire data set. The 5 OTFs used 

in these data sets range from low to high distortion (Figure 10). A larger value of 

normalized energy corresponds to less distortion. For comparison purposes, contour plots 

of the low and high distortion OTFs are shown in Figure 11. 

Normalized energy is the percentage of possible weighting for a 128x128 OTF. 

The maximum weighting energy at any pixel is 1.0, so a fully weighted, non-distorting 

OTF contains a total energy of 1282 and a normalized energy of 100%. 
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Figure 9. Distortion affected by each OTF. 
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Figure 10. OTF normalized weighting energies. 
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Figure 11. Selected OTF contour plots. 

While data sets 1 through 6 are created with a single OTF applied throughout the 

data set, the final data set is created by randomly varying the OTF throughout each 

satellite pass. A varying OTF better approximates the true constantly changing 
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atmospheric distortion. In order to create the randomly varying data, five different OTF 

levels are randomly chosen from the possible 14 for each satellite pass. The OTF used 

for distortion of an image in a pass is a smoothing combination cycling through the 5 

OTFs. Each image in a pass of 20 images is distorted with a different OTF. Images 1, 5, 

10,15, and 20 are distorted with the 5 OTFs randomly chosen from the possible 14. 

Image 2 is distorted with an OTF created as a combination of lA the image 1 OTF and VA 

the image 5 OTF. Image 3 is distorted with an OTF created as a combination of Vi the 

image 1 OTF and Vi the image 5 OTF. The remaining OTFs are created in a similar 

fashion to yield OTFs varying though time (Figure 12). 

Figure 12. Normalized energy of sample random OTFs from data set 7 plotted against 
time. Time is represented by temporally spaced images 1 through 20. 

Data sets 2 through 7 allow examination of the impact training and testing at different 

distortion levels can have. 
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3.2.2 Scale and Resolution. From analysis of the real imagery, it is apparent that 

the simulated images created by SATSIM are approximately twice the size of the images 

obtained by the telescope. To achieve the proper scale in the simulated data, the 128x128 

images are first low pass filtered then scaled by one half. The smaller image must then be 

inserted into a 128x128 background image. The background image is simply a 128x128 

matrix of zeros. Due to the smaller scale of the satellite within the image, information is 

lost because of lost information pixels, and the image pair comparison algorithm must be 

capable of working with scale differences through re-scaling or scale invariance. 

3.2.3 Pairing. As shown in Figure 5, creation of image pairs with real data 

would be based on the proper orbital and telescope information. The information would 

be fed into the SATSIG program, which would produce a reference image corresponding 

to each real image. These two images would make up an image pair. Creating image 

pairs for the simulated data is the reverse process. A simulated image is used to produce 

a pseudo-measured image. These two images then make up the image pair for a normally 

behaving satellite. To create anomalous data, the images within each pair for an 

anomalous pass are chosen so they do not match. 

Initially, 10 passes are created in which the satellites behavior is considered 

anomalous and another 10 passes in which the satellite behaves properly. Each pass in 

the first data set consists of 20 image pairs, for a total of 400 image pairs. Figure 13 and 

Figure 14 are examples of normal and abnormal satellite behavior. The image pairs in 

Figure 13 match, while the image pairs in Figure 14 do not match. 
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Pseudo-Measured Image Reference Image 

1 nov/ im 4 1nov/sim 4 

1nov/im 8 1 nov/sim 8 

1 nov/ im 12 i nov/sim 12 

1 nov/im 16 Inov/sim 16 

1 nov/im 20 1 nov/sim 20 

Figure 13. Selected image pairs of a pass with normal satellite behavior. 
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Pseudo-Measured Image Reference Image 

13nov/ im 4 13nov/sim 4 

13nov/im 8 13nov/sim 8 

13nov/im 12 13nov/sim 12 

13nov/im 16 13nov/sim 16 

13nov/im 20 13nov/sim 20 

Figure 14. Selected image pairs of a pass with anomalous satellite behavior. 
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3.2.4 Data Set Use. Data set 1 is used to explore types of features and investigate 

initial classification techniques. Once initial exploration is complete, the remaining data 

sets are created. These data sets are based on 100 new satellite passes containing 20 

images each. To explore the effect of differing atmospheric conditions, six sets of 2000 

image pairs are created. The pseudo-measured images in each of the six sets are created 

using six different distortion levels. With these six sets of image pairs, it is possible to 

asses the impact on performance of training and testing with different OTFs. In total, 

data sets 2 through 6 contain 12,000 image pairs. 

3.3 Data Representation with Features 

With a database of simulated image pairs created, we must concentrate on the 

main step in the solution procedure, classification of these image pairs. The image pairs 

described in section 3.2 must be represented by a relatively small collection of features 

because of the nature of statistical classifiers. A statistical classifier is based on the class 

conditional probability density functions for each feature. Each PDF is estimated from 

data, and exponentially more data are needed for each additional feature. Feature 

extraction also reduces the dimensionality of the problem and can minimize 

classification-hampering extraneous information 

To initially explore different types of features, a total of 26 different feature sets 

will be created. Each feature set is made up of a collection of 1 to 25 features. Feature 

sets will be combined into a feature vector to be used for classification of data set 1. 

Feature vectors will include two or more feature sets for a minimum feature vector length 

of two. The feature sets that prove promising will be further evaluated with data sets 2 

through 7 to create a final feature vector that is capable of describing the image pair in 

enough detail to determine if the imaged satellite is behaving normally or abnormally. 

3.3.1  Two-dimensional Fourier Space Features. The two-dimensional Fourier 

space provides a representation of an image that can be used to effectively capture shape 

and rotation information. Features derived from the Fourier matrix make up the bulk of 

the feature sets tested. 

26 



3.3.1.1 Block Features. Block features can be easily extracted from a Fourier 

matrix and are useful in describing the shape of an image. Each block feature is one 

specific value within a block defined to enclose the desired number of features. This 

block is generally close to the center of the Fourier matrix as the values close to the center 

of the matrix correspond to the more general shape parameters of the image. The block is 

not symmetric about the center of the matrix because the matrix itself is symmetric. The 

Fourier matrix does not, however, represent the image with half the number of values 

because, due to the nature of the Fourier transform, the block features have both a real 

and imaginary portion. The subset of 25 values extracted from the Fourier matrix are 

depicted in Figure 15. 

Transform to 
Fourier Space 

Figure 15. Fourier space block feature extraction. 

The first two feature sets are defined to be the 25 block features for each image 

within an image pair. The issue of statistical normalization gives rise to two additional 

feature sets. Block features are often statistically normalized to ensure that the mean and 

variance of each feature are of the same magnitude [10]. For all features F, (i = 1...25), a 

new feature F, is calculated: 
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Fi =   i J = 1...25 1     VVAR(F;) 

Two additional feature sets are constructed from the 25 normalized block features for 

each image in an image pair. 

While initial exploration uses block features taken from the Fourier transform of 

the gray scale image, the features can also be extracted from the Fourier transform of a 

binary image created by thresholding (section 3.3.2.1). The block features in data sets 2 

through 7 are extracted from the binary image. 

3.3.1.2 Wedge Features. Rotational difference between images can be captured 

with wedge features. Wedge features are calculated by summing the energy within 

wedges of the Fourier matrix. Energy is defined as the complex value at each pixel times 

the complex conjugate ofthat value. Thus, energy at each spectral location is a real 

value. The summed energies from eight wedges of equal size are used as features. 

Wedges from only one half of the symmetric Fourier matrix are required. The process as 

well as an example of how the wedge features differ for rotationally distinct images are 

shown in Figure 16. 
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Figure 16. Fourier space wedge feature extraction with example wedge energy sums 
depicted. 

Due to the size difference between the measured and reference portion of each 

image pair, it is important to have wedge features that are scale invariant. This is 

accomplished by energy normalizing the features. For all features G, (/ = 1...8), a new 

feature G, is calculated: 

Gi 
Gi = 

2*/ 
7-1...8 
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The two energy normalized wedge feature sets as well as a statistically normalized set of 

the same features add four additional sets for testing. 

3.3.2 Moment-based Features. Moment-based features are another means by 

which the shape of an image can be represented. The moments of an image of two 

dimensions can be defined for both gray scale and binary images. To reduce the possible 

effects of background values on the moment calculations, the images will be transformed 

to binary images. This transformation should capture the satellite regardless of the 

background and make comparison between images with different background levels 

possible. 

3.3.2.1  Conversion to Binary Images by Thresholding. To transform a gray scale 

image to a binary image, pixel values are compared to a chosen threshold and set to a 

binary value as: 

1 
ßx,y) ^ Threshold 

0 

For the real measured images, a threshold value of mean plus three times the deviation 

was empirically chosen (Figure 17). 
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Figure 17. Real image gray scale to binary image transform by thresholding. 

The simulated data required slightly different treatment than real data because the 

artificial nature of the background inflated the standard deviation. Thus, for the 

simulated images, a threshold value of mean plus one quarter of the deviation is used. 

3.3.2.2 Moments of a Discrete Binary Image. By simplification of the gray scale 

definition of moments, we can achieve the following equation for the moments of a 

discrete binary image [11]: 

mpq=^(x-~xT(y-~yr, 
S 

where (x,y) denote the indices of the object center of mass, and S is the set of all pixels 

of value 1. From the definition of binary image moments, we can see that the zero-order 

moment (mo,o) is simply a summation of the pixels, with the result being object area. The 

first-order moments (moj, m^o) are defined to equal zero. Second-order moments (m;,;, 

ni2,o, mo,i) can be used to determine the axis around which the object can be rotated with 

minimum inertia with the equation [11,12]: 
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(p -— arctan 
1 (    2mu    ^ 

Km2fi-mQ2) 

The angle <j) is the orientation of the axis of minimum inertia with respect to the x 

axis. If the object were an ellipse, the axis of minimum inertia would correspond to the 

major axis. 

A measure of the circularity of the object is defined as eccentricity [11,12]: 

(iH2,o-iHo,2)
2 + 4mlfl

2 

(m2?0+m0i2)
2 

Eccentricity ranges from zero for a circular object to one for a linear object, and is one of 

the five features resulting from the second-order moment analysis. The five measures of 

shape that can be included in the feature vector are eccentricity, angle of the axis of 

minimum inertia, and the three normalized second-order moments (m/j, m2,o, m0,2) 

[11,12]. Figure 18 depicts an example of thresholding and moment-based analysis of two, 

obviously normal and anomalous, simulated image pairs. 
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Figure 18. Moment-based analysis of normal and anomalous image pairs. The gray line 
shows the axis of minimum rotational inertia. 
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Moment-based analysis results in two feature sets, one for each of the images in the 

image pair. 

3.3.3 Comparison Based Features. The nature of this problem suggests features 

derived from a comparison of the images within an image pair. Sixteen feature sets are 

created with features extracted from comparisons within image pairs. Three Euclidean 

distance feature sets, each containing one feature, measure the distance between the 

block, wedge, and moment-based feature sets for each image pair: 

IIM,R.\\ = V2(M<_/?<)2   for / = 1... length of feature set, 

where M is the feature set from the measured image and R is the feature set from the 

corresponding reference image. 

A single feature set consisting of one value is created by taking the absolute 

difference between the angle of minimum inertia for the measured and reference images. 

This feature would certainly be effective for the example of Figure 18. 

The remainder of the feature sets are constructed using the covariance operator to 

produce a covariance matrix of the feature sets from each image in an image pair. The 

diagonal elements of the covariance matrix are extracted for three feature sets. The 

diagonal elements of the matrix correspond to the variance between the two images in an 

image pair for each feature in the feature set. Because two images are being compared, 

the diagonal elements of the covariance matrix can be calculated: 

A 
rFmi

JtFri V   (Fmi + Fri 
Fm, 

V 

V 

♦l-^-1-*' for / = 1... length of feature set, 
v      ^ J 

where Frni is feature i within the measured image feature set, Frt is feature i within the 

reference image feature set, and £>, is the corresponding diagonal element of the 

covariance matrix. The Fr, and Fra,- come from the feature sets defined in Sections 3.3.1 

and 3.3.2. [13] 

The diagonal elements of the covariance matrix make up three feature sets, with 

the statistically normalized diagonal elements forming an additional three. The number 

of features in each of these feature sets depends upon the feature set upon which the 
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covariance matrix was based: 25 for the block features, 8 for the wedge features, and 5 for 

the moment-based features. 

The final six feature sets consist of one feature each. These feature sets are simply 

the sum of the diagonal element feature sets. Table 2 depicts the feature sets and their 

makeup. 
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Table 2.  Feature set description. 

Feature Sei Description of Feature Set Number of 
Elements 

1 Diagonal Elements of Covariance Matrix of Block FFT Features 25 

2 Diagonal Elements of Covariance Matrix of Moment-based Features 5 

3 
Normalized Diagonal Elements of Covariance Matrix of Moment-based 
Features 

5 

4 
Normalized Diagonal Elements of Covariance Matrix of Block FFT 
Features 

25 

5 Diagonal Elements of Covariance Matrix of Wedge FFT Features 8 

6 
Normalized Diagonal Elements of Covariance Matrix of Wedge FFT 
Features 

8 

7 Absolute Difference between Angles of Minimum Inertia 1 

8 Euclidean Distance between Block FFT Features 1 

9 Euclidean Distance between Moment-based Features 1 

10 Euclidean Distance between Wedge FFT Features 1 

11 Measured Image Block FFT Features 25 

12 Measured Image Moment-based Features 5 

13 Measured Image Wedge FFT Features 8 

14 Normalized Measured Image Block FFT Features 25 

15 Normalized Measured Image Wedge FFT Features 8 

16 Normalized Reference Image Block FFT Features 25 

17 Normalized Reference Image Wedge Features 8 

18 Reference Image Block FFT Features 25 

19 
Sum of Diagonal Elements of Covariance Matrix of Moment-based 
Features 

1 

20 Sum of Normalized Diagonal Elements of Covariance Matrix of Block 
FFT Features 

1 

21 Sum of Diagonal Elements of Covariance Matrix of Wedge FFT Features 1 

22 Reference Image Moment-based Features 5 

23 Reference Image Wedge FFT Features 8 

24 Sum of Normalized Diagonal Elements of Covariance Matrix of Moment- 
based Features 

1 

25 Sum of Normalized Diagonal Elements of Covariance Matrix of Wedge 
FFT Features 

1 

26 Sum of Diagonal Elements of Covariance Matrix of Block FFT Features 1 
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3.3.4 Choosing Features. From Table 2 it is evident that a number of different 

combinations of feature sets with a wide range of final feature vector lengths are possible. 

As complete enumeration of all possible feature set combinations is computationally 

unfeasible, only combinations of two feature sets will be completely tested. The results 

from the two feature set combinations will be examined to determine what feature sets 

have a tendency to improve classification accuracy. These feature sets will then be tested 

in an ad hoc manner in groups of greater than two. 

Once the feature sets have been tested on the first data set, and the number of 

possible feature types reduced, the second data set will be used to continue selecting the 

best features. An analysis of each possible feature will reduce the number of features in 

the final feature vector. The final feature vector will contain the features that achieve a 

balance of good classification accuracy, low classification variance resulting from varying 

training data, and reduced dimensionality. 

3.4 Classification Technique 

Classification is the point in the pattern recognition process where we are required 

to make decisions. In the solution procedure depicted in Figure 5, two decision points 

exist. First, we must decide if a given image pair is a match, then we must decide if the 

satellite is behaving normally or abnormally based on the images that make up that pass. 

3.4.1 Image Pair Classification. A Gaussian classifier is generally the first 

technique applied to classification problems and is capable of defining quadratic 

boundaries between classes [1]. If the statistical classifier works well enough, there is no 

need to look at other techniques. For initial classification of the image pairs, the 

Gaussian classifier performs well. The Gaussian classifier used is based on a minimum 

Mahalanobis distance decision boundary. 

Training and test sets for data set 1 are made up of 400 image pairs. The training 

and test sets each contain 200 image pairs, which correspond to 10 satellite passes. The 

passes are balanced between normal and anomalous passes. Multiple perturbations of the 

training and test sets are used to evaluate data dependency. With multiple repetitions, a 

37 



confidence interval is also constructed for the true proportions of proper classification and 

the variability from random partitioning of the training and test sets can be evaluated. 

Using data sets 2 through 7, we examine the impact of training and testing with 

each of the 6 different distortion levels to get a feel for the robustness to distortion. In the 

robustness experiments, the data are evenly split between training and testing. Data sets 2 

through 7 are also used to explore the quantity of data required for proper training. This 

experiment requires a split of the data into training and test sets of different sizes. 

3.4.2 Satellite Behavior Classification. Classification of a satellite's behavior is 

based on the results of every image pair in that satellite's pass. In the simulated data, 

each pass consists of 20 image pairs. Operationally, the passes can contain anywhere 

from 3 to 60 images, so the classification technique must not be specific to 20 image 

pairs. As an initial, basic, method of analyzing a pass, a simple "majority wins" strategy 

will be applied. If the pass contains more image pairs that are deemed matches than those 

that are not, the satellite will be considered to be behaving properly. 

3.5 Experiments 

The purpose of the experiments is to validate the solution procedure proposed in 

Figure 5. To accomplish this, we must find a set of features that properly classify satellite 

passes. The most extensive set of experiments concentrate of finding these features. The 

features should provide good classification accuracy, and reduce the dimensionality of the 

data representation. They should also produce a classifier that has low variability to the 

order of presentation of the training data. The experiments start with a broad view and 

explore the types of features that work. The different types of features explored are 

represented by the different feature sets in Table 2. The feature set experiments are 

conducted with a random separation of the data into test and training sets of equal size. 

Image pairs from the same satellite pass can be in both test and training sets in these 

experiments. 

After exploration of feature type, the individual features are evaluated. These 

experiments are performed with random separation of the data into training and test sets 
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by satellite pass. In these experiments, image pairs from a single satellite pass are wholly 

contained in either the test or the training group. 

Two other experiments are conducted: an experiment to explore robustness to 

data quality is performed, and an experiment to explore the quantity of data that should be 

used for training is conducted. The robustness experiment splits the data by satellite pass, 

while the quantity experiment does not. 
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4. Results 

Results from the experiments conducted are reported in this chapter. 

4.1 Feature Experiments 

Determining what features should be used starts with an investigation of different 

types of features by examining the feature sets.  The different feature sets described in 

Table 2 are combined in groups of two and tested. For each combination of feature sets, 

the classification accuracy of that feature set combination is recorded in three specific 

values: Pgg (the probability that an image pair that matches is classified as a match), Pbb 

(the probability that an image pair that does not match is classified as not a match), and 

CA (the summed classification accuracy, Pgg + Pbb )• 

The confusion matrix is also an effective method for looking at classification 

accuracy (Figure 19). 
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Figure 19. Confusion Matrix Defined. 

Before we start looking at confusion matrices for different feature vectors, a 

general idea of which feature sets work well is needed. By complete enumeration, it is 

possible to look at pair-wise combinations of all the feature sets. By graphing the 

outcomes of each combination, a feel for the which feature sets are better can be attained 

(Figure 20). High and low overall classification accuracy trends can be seen in the CA 

surface. 
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Figure 20. Summed classification accuracy (CA) surface and projection for a two feature 
set feature vector. 

From the surface in Figure 20 we can see the relative performance of different 

feature sets in pair-wise combinations. The projection maps the surface onto a gray scale 

two-dimensional representation in which white represents the highest classification 

accuracy. With a general feel for which feature sets work better from the graphing 

heuristic (Figure 20), new combinations of multiple feature sets are created and tested. 
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Figure 21. Selected confusion matrices for image pair classification with different feature 
sets as defined in Table 2. 
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Figure 21. Selected confusion matrices for image pair classification with different feature 
sets as defined in Table 2., continued. 
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The means and variances in the confusion matrices in Figure 21 are based on 100 

classification runs with random partitioning of the test and training sets. The standard 

deviation is greater if the classification results have more data dependency. Data 

dependency is something we hope to avoid with a good feature set, so high variances are 

not desirable. 

Along with a desire for smaller variance, we would like to see good classification 

accuracy, and a small number of features. We are capable of achieving good 

classification accuracy with a very small number of features when using summed 

combination based feature sets. The combination features based on the block and 

moment based features performed well, and are thus explored in greater detail. 

To continue exploration of the features, the remaining data sets, each based on the 

same 2000 images, are used. An expanded search into the block and moment-based 

comparison features is conducted as well as an evaluation of performance of the features 

over ranges of image distortion. With the six different sets of data at different distortion 

levels, a measure of robustness to distortion can be obtained. 

The block and moment-based comparison features presented in Table 3 are 

considered for use in the final feature vector. Analysis of these features is initially 

accomplished heuristically by observation of the feature's distributions. Tests are 

performed on those features that appear to be good class differentiators. 
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Table 3. Feature descriptions. 

Features Description of Features 

1-25 Magnitude of the Difference between the Thresholded Pseudo-Measured and Reference 
images Block FFT features. 

26-30 Magnitude of the Difference between the Pseudo-Measured and Reference images 
Moment-Based features. 

31 Euclidean distance between the Thresholded Pseudo-Measured and Reference images 
Block FFT features. 

32 Euclidean distance between the Pseudo-Measured and Reference images Moment-Based 
features. 

33-57 Normalized Diagonal Elements of Covariance Matrix of Thresholded Pseudo-Measured 
and Reference images Block FFT features. 

58-62 Normalized Diagonal Elements of Covariance Matrix of Pseudo-Measured and 
Reference images Moment-Based features. 

63 Summed absolute value of the Normalized Diagonal Elements of Covariance Matrix of 
Thresholded Pseudo-Measured and Reference images Block FFT features. 

64 Summed absolute value of the Normalized Diagonal Elements of Covariance Matrix of 
Pseudo-Measured and Reference images Moment-Based features. 

65 Euclidean distance between the Magnitude of the Thresholded Pseudo-Measured and 
Reference images Block FFT features. 

To find good features for a statistical classifier, an examination of the training 

data's statistical distributions is a good heuristic with which to start. The following 

histograms are built with features extracted from the 500 matching image pairs and 500 

non-matching image pairs in the training data (Figure 23). The superimposed normal 

probability curves show the Gaussian representation of the data used in the statistical 

classifier. There are three histograms for each feature examined. The first two show the 

distribution of each class (matching / non-matching) with the corresponding Gaussian 

representation. The third histogram for each feature shows the intersection of the two 

features' Gaussian representation, and give a feel for the overlap of the classes in that 

feature. 
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Figure 22. Selected feature histograms. 
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Figure 23. Selected feature histograms, continued. 

An evaluation of the histograms of all 65 possible features identifies features 5, 

29, and 59 as having good class separation. While these three features do not provide the 

best classification accuracy achieved, the features make intuitive sense and should work 

well with real data. The accuracy for image pair classification with these three features is 

high enough that satellite pass classification accuracy is very high. The confusion matrix 

in Figure 24 is based on images distorted with the random OTF analyzed with 1000 

variations of data partitioning. The data are partitioned by satellite pass. 
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Figure 24. Confusion matrix for features 5, 29, and 59 with 1000 perturbations of the 
data. 

Feature 5 is the energy difference between one block feature extracted from the 

measured and reference images. Feature 29 is the difference in the angle of minimum 

inertia between the measured and reference images. Feature 54 is the diagonal element of 

the covariance matrix of the measured and reference images that corresponds to one of 

the second-order moments. With these three features, the dimensionality of the problem 

is dramatically reduced, and the variability of classification accuracy due to data division 

is small. These three features achieve the stated objectives, and will be used as the final 

feature vector in evaluating robustness to distortion and training set size. 

4.2 Robustness Experiment 

To evaluate the solution technique's robustness to atmospheric distortion, data 

sets 2 through 7 are used. With these data sets, training and testing is accomplished at 

each OTF level for a total of 36 test points. The experiment is performed 1000 times to 

quantify the training data dependency. For each of the 1000 repetitions, the 100 passes 

are randomly divided into training and test sets. The training and test sets each contain 50 

passes: 25 anomalous and 25 normal. Figure 25 depicts the results from this 36 point test 
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in a gray scale representation. Better classification accuracy is represented by lighter 

squares. From the overall shade of a column, we can see how well training with a 

particular OTF works. 
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Figure 25. OTF level test results. 

As we can see from the general light shade in columns 1 and 6, the best 

performance is achieved when training is accomplished with data created using OTF 1 

(low distortion) or OTF 6 (random distortion) (Figure 25). Low or varying distortion in 

the training set results in good accuracy in classification image pairs distorted at any 

level. Classification is actually better for images distorted to a different level than for 

images at the training distortion level. It appears from the results of training with OTF 

level 1, that training with more accurate data results in better generalization, which allows 

better classification regardless of the distortion. Evaluation of the random OTF levels 

indicates training with a varying level also provides a more generalized classifier. 
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So, when trained with a level of distortion that allows good generalization, the 

classifier is robust to distortion. Training with real data should lead to a generalized 

classifier as the real image pairs would have a high degree of randomness in the level of 

distortion. A classifier trained with real data would be similar to the classifier trained 

with the random OTF. 

4.3 Data Quantity Experiment 

Exploring the data quantity requirement is the final experiment conducted. Using 

the data from the random OTF, nine different partitions of the data into training and test 

sets are made. Classification accuracy is recorded at each level. The data are split into 

sets: 10% training / 90% test, 20% training / 80% test,..., 90% training /10% test. 100 

repetitions with random assignment to test and training groups are accomplished. Figure 

26 contains a plot of the results. 

160 

155- 

o 
co 
=s 
Ü 
Ü 
< 
c 
o 

150- 

8    145- .o 

"55 
v> 
nJ 
Ü 

140- 

135 
4 5 6 

Data Division 

Figure 26. Classification accuracy as affected by data split. Data division * 10 
percentage used for training. 
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These results indicate that the classifier can be over-trained. It appears that a 

smaller amount of training data results in a more generalized classifier. The main loss of 

classification accuracy was due to a loss of Pgg, or proper classification of matching pairs. 

As more training exemplars are used, the ability of the classifier to properly identify a 

good pass lessens. While the specific number of training exemplars for real data may be 

quite different than for the manufactured data, care must be taken not to over-train the 

classifier when using real data. A similar test can be performed with real data to establish 

the amount of training data that does not reduce the generality of the classifier. 

4.4 Classification Accuracy for Image Pairs 

Using the generalized classifier based on training and testing with the random 

OTF, and a feature vector composed of the three features from above, we can properly 

identify image pair matches with 74% accuracy. Classification accuracy for non- 

matching pairs is better: 85.5%. 

With 1000 random partitions of the data, and an, apparently valid (Figure 27), 

assumption of normality, we can calculate confidence intervals for the containing true 

probabilities of classification to be: 

Pgg = 73.941 ±.1366, 

Pbb = 85.442 ±.1161. 
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Figure 27. Histogram of 1000 classification results with superimposed normal curve. 
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4.5 Classification Accuracy for Satellite Behavior 

Image pair classification is the building block for the true endeavor: classifying a 

satellite's behavior as "normal" or "anomalous" over a single pass. This can be 

accomplished with a simple maximum count algorithm that can be analyzed as a binomial 

trial experiment. If 50% or more of the image pairs in a pass match, we will assign the 

satellite behavior to the "normal" class, otherwise the satellite behavior will be flagged as 

"anomalous." This experiment, while simple, yields very good results. 

The most egregious error that could be made would be to call a satellite behaving 

abnormally, normal. Analyzing this situation with as a binomial trial, we can define the 

probability of success as being the probability that an image pair that does not match is 

classified as matching. Using the equation for a binomial experiment and an assumption 

of 20 image pairs per pass, it is simple to calculate the probability of misclassifying an 

anomalous satellite [14]: 

20 

p[normal I anomalous] = X (y) P^P\ 
20 -y 

bb 
y=ll 

where/%, = 1 -Pbb, andPbb = .85442. 

^[normal I anomalous] =   .000029024 

So, with 20 images, there is virtually 100% chance of correctly classifying an 

anomalously behaving satellite. Similarly, the chance of correctly classifying a normally 

behaving satellite is 99.5%. With only 2 image pairs, the maximum pick algorithm gives 

a probability of misclassifying an anomalously behaving satellite of only 0.0212. Figure 

28 shows the high power of the simple maximum pick algorithm based on the number of 

image pairs in a pass. 
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Figure 28. Probability of misclassification of an anomalous satellite pass plotted against 
the number of images in the pass. 

The probabilities calculated above assume independence of classification for each 

image pair. From experiments with the simulated data, this assumption does not appear 

to be valid. The contrived nature of the data gives rise to data in which the conditions 

leading to misclassification of one image pair in a pass are present in other image pairs in 

that pass. If real training data are carefully chosen, this situation should be avoidable. 

This will lead to greater independence in classification of each image pair. It is also 

simple to change the counting threshold for finding a pass "normal" to a point that 

ensures 100% detection of anomalous passes. 
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5. Conclusions 

This chapter makes high level conclusions regarding the solution procedure and 

discusses the operational application of this work. 

5.1 Validity of Solution Procedure 

The experimental results clearly show that the solution procedure proposed in this 

thesis works. By utilizing the information that is available with each measured image, it 

is possible to create a simulated reference image against which to compare the measured 

image. This reference image creation and comparison can be made in real time to ensure 

that the status of Air Force monitored satellites is almost constantly available. 

While the specific results and specific conclusions that could be drawn from them 

are interesting, we must keep in mind that the experiments upon which the results are 

based use simulated data. The training sets are more limited in size than an operational 

system would use, but the simulated data are probably more consistent than real data 

would be. These results show only how well these algorithms work on simulated data, 

and while care has been taken to make the simulated data as real as possible, there is no 

escaping the fact that it is simulated data. 

The specific results are important in comparing different methodologies, and 

understanding how well the solution methodologies would compare in an operational 

setting. As with any use of simulation, the relative outcomes are generally more telling 

than the specific values. 

5.2 Operational Application 

This thesis demonstrates that an algorithm using simulated reference imagery is 

feasible, but to apply this procedure as an operational system, real data must be collected 

for training purposes. Almost every step of the procedure would require modification to 

ensure performance was maximized for real data. Improvements could be made to the 

procedure in many ways. 

A filtering system could be applied to remove images of poor quality before 

sending them to the classification algorithm. Quality could be defined as containing shape 
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information. Removing images of poor quality would reduce the number of images for 

the final maximum pick algorithm, but the images that remained would produce more 

accurate results. 

Different classification techniques could be applied to the image pair 

classification problem. Many techniques exist that are not based on statistics, but even 

improved statistical techniques could be used. The probability distribution of some of the 

features is not best modeled by a Gaussian probability density function. Features based 

on differences, which have an exponential distribution could be modeled with the 

exponential distribution. 

The technique used to classify satellite passes could be made more complex. The 

confidence in each of the image pair classifications could be used as a part of the pass 

classification scheme. This could give more weight to image pairs in a pass that really do 

or do not match. The image pairs that are close calls would not carry as much weight, 

which could make the classification of passes more accurate. 

5.3 Final Summary 

A more complete understanding of the problem motivated a new approach to take 

advantage of all available information. With more information, the problem is not as 

daunting and a simple solution procedure based on comparisons is possible. This 

procedure works on the simulated data, and proves that the concept will work if applied 

to the operational situation. 
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